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Abstract

Programmed temperature retention indices can be extrapolated from one set of conditions to another by a simple
logarithmic relation.A similar relation for retention temperatures is less successful, but Giddings™ approximation works well.
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1. Extrapolation of retention temperature or time

When an analyst wishes to compare a programmed
chromatogram with published data for the same
solutes that is produced on the same stationary phase
but under different conditions, a method is needed to
extrapolate data from one to the other. This problem
is different from the one solved by Snijders et al. [1]
who calculated programmed retention temperatures
from isothermal retention indices and the retention
times of the n-alkanes.

The problem is simplified by the fact that the
retention time is a function [2] of rm/F where
r=heating rate, m=mass of stationary phase, and
F=volume flow-rate of mobile phase. Hence, these
three can be considered together. Also, data on the
effect of changing one can be used directly to show
the effect of changing either of the other two.

2. Logarithmic extrapolation

Log(rm/F) is nearly linear with (1/7,—1/Ty) and
therefore with 1/T}, and the slope is nearly in-
dependent of the column or its conditions, except
when T,=>T,. This relation is best seen in Harris and
Habgood’s figure 4.08 [2] which clarifies Rowan’s
original [3]. Then if Ty, and Ty, are known retention
temperatures and T, is the value to be extrapolated,
then it would be expected that

LTy, — 1Ty, . log[(rm/F), /(rm/F) ]
VT, = UTy, — loglrm/F),/(rm/F),]

(1)

In many practical problems, parts of the logarithmic
expression will cancel. For example, if results on one
column are to be compared, then the mass of
stationary phase, m, remains constant, m, =m, =m,,
and m disappears from the equation.

Eq. (1) was less successful than expected, as
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Fig. 1. Error in retention temperatures calculated from the logarithmic extrapolation and from Giddings' approximation. (©) logarithmic

extrapolation; (X ) Giddings’ approximation.

shown in Fig. 1, so it was used only as a starting
approximation for a re-entry procedure using Gid-
dings’ equation as described below.

3. More precise equation for T

Giddings [4] gives a relation which holds when
the dead time is negligible, or equivalently when
Ty>>T,. This may be re-arranged to

7= AH/R
" In{mr(AH/RT, + 0.85)’/(Fp, AH/R)} — AS/R
(3)
Given two retention temperatures T, under different
conditions Eq. (3) may be solved iteratively for
AH/R and AS/R and the value applied to solve the

third set of conditions. The iteration converges in
less than ten cycles using the following procedure.

4. Iterative procedure

To obtain approximate values of AH/R and AS/R,
the 0.85 in Eq. (3) is at first neglected. Eq. (3) then
reduces to

— AH/RT, = In{mr(AH/RT, + 0.85)*/(Fp,AH/R)}
— AS/R 4)

Two such equations for two values Ty, and Ty, and
(rm/F), and (rm/F’), are then simultaneously solved
to give

AH  2In(Ty, /Ty,) = Inl[(rm/F), /(rm/F),]

R 1Te, = 11T, &)
AS/R ~In(rm/F), + In(AH/R) — 2 In T,
+ AH/RTy, (6)

The less inexact Eq. (3) is then used to give

— (AHIRY(1/Ty, — 1/Tg,) = In[(rm/F), /(rm/F),]
+21n[(AH/RT,, + 0.85)/(AH/RT, + 0.85)]  (7)

The approximate value of AH/R is entered into the
In terms on the right, and the equation is solved for
the AH/R on the left. The new value of AH/R is
then entered into the logarithmic terms and the
equation is again solved for AH/R, which is again
entered into the logarithmic terms and so on until
successive values of AH/R are negligibly different.
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Four iterations are usually sufficient. This value is
then entered into Eq. (6) to obtain AS/R.

These values of AH/R and AS/R are then entered
into Eq. (3) which is solved for Ty, using (rm/F);.
A re-entry procedure is again needed because T,
appears in the In term on the right. A first approxi-
mation is obtained by assuming 1/T is linear with
In(rm/F) as shown earlier. This is entered into the
logarithmic term on the right of Eq. (3), which is
then solved for Ty,. The new value of T, is then
entered into the In term, a new value of T, is
calculated, again entered into the In term and so on
as before, until successive values of Ty, are negligib-
ly different. Four iterations are again usually suffi-
cient.

This procedure can be performed tediously on a
hand calculator in about half an hour. A computer is
preferable.

5. Extrapolating retention indices I under two
programs to a third program

The Sadtler Index [5] lists indices at 2°/m and
8°/m and these may differ by up to 30 units or may
differ very little. If the analysis is performed at some
other rate, then a method of extrapolation is needed.
A simple linear extrapolation produces poor results,
but this time a logarithmic extrapolation works well.
A graduate student pointed out to me that my logical
argument leading to this logarithmic relation con-
tained a fallacy, so I offer it only as an empirical
relation that works.

If two programmed indices are available they may
be interpolated or extrapolated using the simple
relations

r-rr _ logl(rm/F), /(rm/F),]

=10 logl(rm/F),/(rm/F),]
_ logl(rd Lp/d v), /(rd,Lp/d v),]
" logl(rd Lp/d_ v),/(rd Lp/d v),)

®

As before, there will usually be several of the
quantities in parentheses that remain constant and
will cancel out of the equation.

This relation was tested on the data of Curvers et
al. [6] using experimental values at 2°/m and 4°/m
to calculate /7 at 8°/m and compare the result with
their experimental value at 8°/m. Agreement with

experiment was always within one unit. The mean
deviation was +0.1 and the mean absolute deviation
was 0.4. Even for the most volatile sample (2-
pentanone, b.p. 102°C) where the approximations
might be expected to fail, the deviation was only 0.2
unit.

6. Other units for rm/F

In open tubular columns, the amount of stationary
phase is often specified as the film thickness d; at
room temperature. This is proportional to the mass,
so it can replace m in Eq. (1) where masses appear
as ratios, provided the column dimensions are other-
wise identical. Otherwise, it must be replaced by
dLd_p (neglecting 7 which cancels from the ratios)
where L is the column length, 4, the column
diameter, and p the density of the stationary phase. If
the linear flow-rate v is given it must be transformed
to the volume flow-rate F OCdiv (again neglecting 7).
With both of these corrections, rm/F may be re-
placed by rdLp/d v. Eq. (1) then becomes

Ty — UTy,  logl(rd,Lpld,v), /(rd,Lp/d.v),]
1/Te, — UTg,  logl(rd,Lp/d ),/ (rd Lpld v),]

2)

Again, some of these may be constant between the
two columns and will cancel from the equation.

Two cases are important. If only one column is
being considered, but the heating rate or flow-rate is
changed, then the mass of stationary phase remains
constant and d,Lp/d_ will cancel. When two columns
are considered, p can usually be cancelled because
the density of the stationary phase p will not usually
change significantly between the conditions of the
two columns.

7. Using the Sadtler programmed indices

Sadtler gives data at 2°/m and 8°/m. They also
give the dimensions of the columns: 25 m long with
film thickness 0.52 pm and internal diameter 0.31
mm. They do not specify a flow-rate. They provide
one example of an isothermal chromatogram that
shows a methane peak at 1.199 m at 140°C. This
corresponds to 20.85 m/min or 34.75 cm/s or



S.J. Hawkes | J. Chromatogr. A 746 (1996) 282-285 285

0.0262 cm’/s. They do not say whether this is their
routine flow-rate applicable to all their data, but in
the absence of other information it is reasonable to
assume that all their work was carried out at the
same constant inlet pressure. In this case, their flow-
rate will be inversely proportional to the viscosity of
the gas. Since this was hydrogen, and the viscosity of
hydrogen varies [7] with 7°°*°” and the published
flow was at 423 K their isothermal flow-rate will be

F; =(0.0262 cm’ /min) (423/T)*%%¢7 )

vy = (34.75 cm/s) (423/7)>% (10)

An analyst may therefore plug these into the equa-
tions above if he/she is prepared to rely on the
assumption that the entire Sadtler Index was pre-
pared using a constant (though unspecified) inlet
pressure.
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